Rat indwelling urinary catheter model of Candida albicans biofilm infection.
نویسندگان
چکیده
Indwelling urinary catheters are commonly used in the management of hospitalized patients. Candida can adhere to the device surface and propagate as a biofilm. These Candida biofilm communities differ from free-floating Candida, exhibiting high tolerance to antifungal therapy. The significance of catheter-associated candiduria is often unclear, and treatment may be problematic considering the biofilm drug-resistant phenotype. Here we describe a rodent model for the study of urinary catheter-associated Candida albicans biofilm infection that mimics this common process in patients. In the setting of a functioning, indwelling urinary catheter in a rat, Candida proliferated as a biofilm on the device surface. Characteristic biofilm architecture was observed, including adherent, filamentous cells embedded in an extracellular matrix. Similar to what occurs in human patients, animals with this infection developed candiduria and pyuria. Infection progressed to cystitis, and a biofilmlike covering was observed over the bladder surface. Furthermore, large numbers of C. albicans cells were dispersed into the urine from either the catheter or bladder wall biofilm over the infection period. We successfully utilized the model to test the efficacy of antifungals, analyze transcriptional patterns, and examine the phenotype of a genetic mutant. The model should be useful for future investigations involving the pathogenesis, diagnosis, therapy, prevention, and drug resistance of Candida biofilms in the urinary tract.
منابع مشابه
Conserved and Divergent Roles of Bcr1 and CFEM Proteins in Candida parapsilosis and Candida albicans
Candida parapsilosis is a pathogenic fungus that is major cause of hospital-acquired infection, predominantly due to growth as biofilms on indwelling medical devices. It is related to Candida albicans, which remains the most common cause of candidiasis disease in humans. The transcription factor Bcr1 is an important regulator of biofilm formation in vitro in both C. parapsilosis and C. albicans...
متن کاملBiofilm as Virulence Marker in Candida Isolated from Blood
Biofilm production has been implicated as a potential virulence factor of some candida species responsible for catheter related candidaemia in ICU patients with indwelling devices. Early detection of slime production by the candida species may be useful for clinical decisions. We therefore have aimed at demonstrating the formation of biofilm by candida species isolated from blood samples collec...
متن کاملAlcohol dehydrogenase restricts the ability of the pathogen Candida albicans to form a biofilm on catheter surfaces through an ethanol-based mechanism.
Candida biofilms formed on indwelling medical devices are increasingly associated with severe infections. In this study, we used proteomics and Western and Northern blotting analyses to demonstrate that alcohol dehydrogenase (ADH) is downregulated in Candida biofilms. Disruption of ADH1 significantly (P = 0.0046) enhanced the ability of Candida albicans to form biofilm. Confocal scanning laser ...
متن کاملMedical importance of biofilms in Candida infections.
Many Candida infections involve biofilm formation on implanted devices such as an indwelling catheter, a prosthetic heart valve or a denture. Candida biofilms can be formed in vitro using several model systems. In the simplest of these, organisms are grown on the surfaces of small discs of catheter material or denture acrylic. Biofilms of C. albicans prepared in this way consist of matrix-enclo...
متن کاملCandida albicans biofilm development on medically-relevant foreign bodies in a mouse subcutaneous model followed by bioluminescence imaging.
Candida albicans biofilm development on biotic and/or abiotic surfaces represents a specific threat for hospitalized patients. So far, C. albicans biofilms have been studied predominantly in vitro but there is a crucial need for better understanding of this dynamic process under in vivo conditions. We developed an in vivo subcutaneous rat model to study C. albicans biofilm formation. In our mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 82 12 شماره
صفحات -
تاریخ انتشار 2014